@ai-ml/nvidia-container-toolkit
Project ID: 97743
Description
In addition to this COPR, the package has now been added to Fedora as golang-github-nvidia-container-toolkit. Merging the efforts is underway.
Installation Instructions
Setup the NVIDIA kmod via RPMFusion. Ensure this is working before continuing.
Install the CUDA libraries:
$ sudo dnf install xorg-x11-drv-nvidia-cuda
Setup the COPR repo:
$ sudo dnf copr enable @ai-ml/nvidia-container-toolkit
Install the NVIDIA container toolkit:
$ sudo dnf install nvidia-container-toolkit nvidia-container-toolkit-selinux
Setup the CDI configuration:
$ sudo nvidia-ctk cdi generate -output /etc/cdi/nvidia.yaml
Test everything is working:
$ podman run --device nvidia.com/gpu=all --rm fedora:latest nvidia-smi
If everything is working, you should see something like:
Fri Mar 22 03:18:29 2024
+-----------------------------------------------------------------------------------------+
| NVIDIA-SMI 550.67 Driver Version: 550.67 CUDA Version: 12.4 |
|-----------------------------------------+------------------------+----------------------+
| GPU Name Persistence-M | Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap | Memory-Usage | GPU-Util Compute M. |
| | | MIG M. |
|=========================================+========================+======================|
| 0 NVIDIA GeForce RTX 3080 Ti Off | 00000000:08:00.0 On | N/A |
| 0% 46C P8 38W / 350W | 482MiB / 12288MiB | 12% Default |
| | | N/A |
+-----------------------------------------+------------------------+----------------------+
+-----------------------------------------------------------------------------------------+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|=========================================================================================|
+-----------------------------------------------------------------------------------------+
Test the Difference Between CPU and GPU Performance
Download a PyTorch environment and ensure it runs:
$ podman run --device nvidia.com/gpu=all --rm docker.io/pytorch/pytorch:latest
Test CPU:
$ time podman run --device nvidia.com/gpu=all --rm docker.io/pytorch/pytorch:latest bash -c 'pip install pytorch-benchmark && python -c "import torch; import json; from torchvision.models import efficientnet_b0; from pytorch_benchmark import benchmark; model = efficientnet_b0().to(\"cpu\"); sample = torch.randn(8, 3, 224, 224); results = benchmark(model, sample, num_runs=200); print(json.dumps(results, indent=4))"'
Test GPU:
$ time podman run --device nvidia.com/gpu=all --rm docker.io/pytorch/pytorch:latest bash -c 'pip install pytorch-benchmark && python -c "import torch; import json; from torchvision.models import efficientnet_b0; from pytorch_benchmark import benchmark; model = efficientnet_b0().to(\"cuda\"); sample = torch.randn(8, 3, 224, 224); results = benchmark(model, sample, num_runs=200); print(json.dumps(results, indent=4))"'
Test SELinux Policy
Test if the shipped NVIDIA DGX SELinux policy is working (the nvidia-container-toolkit-selinux package enables container_use_devices by default) :
$ sudo setsebool container_use_devices 0
$ podman run --device nvidia.com/gpu=all \
--security-opt label=type:nvidia_container_t \
--rm fedora:latest nvidia-smi
Re-run testing and then reset SELinux.
$ sudo setsebool container_use_devices 1
Monitoring CPU vs GPU Usage
Use the nvtop utility to monitor what load is on your CPU/GPU:
$ sudo dnf install nvtop
$ nvtop
Something Fun, InstructLab (ilab)
Use InstructLab to run a pre-trained Large Language Model (LLM) and chat with it.
Clone InstructLab and build the container:
$ git clone https://github.com/instructlab/instructlab.git ~/instructlab
$ podman build ~/instructlab/containers/cuda -t instructlab
$ podman run -it --rm --device nvidia.com/gpu=all instructlab
Initialize InstructLab inside the container and start chatting with the LLM:
$ ilab init
$ ilab download
$ ilab chat
Please note, the models, config, etc. are downloaded into the container and will be deleted after the container is stopped.
Something Fun, Image Generation Using ImaginAIry
Use imaginAIry to generate prompt based images using multiple models and the StableStudio web UI.
Build a F40 based container with imaginAIry installed:
$ mkdir ~/imaginary
$ tee ~/imaginary/Dockerfile << EOF
FROM registry.fedoraproject.org/fedora:40
RUN dnf -y install python3-pip rust cargo openssl-devel gcc-c++ libglvnd-glx
RUN pip install imaginairy && pip check
EXPOSE 8000
CMD ["aimg", "server"]
EOF
$ podman build ~/imaginary -t fedora-imaginairy
Run the server:
$ podman run --device nvidia.com/gpu=all \
-p 8000:8000 \
--rm fedora-imaginairy
Visit the web UI at localhost:8000 and start generating images based on prompts.
Something Fun, Image Generation Using InvokeAI
Use InvokeAI to generate prompt based images using multiple models.
Run the server:
$ podman run --device nvidia.com/gpu=all \
-p 9090:9090 \
--rm ghcr.io/invoke-ai/invokeai
Visit the web UI at localhost:9090 and start generating images based on prompts.
Please note, the models are downloaded into the container and will be deleted after the container is stopped.
Active Releases
The following unofficial repositories are provided as-is by owner of this project. Contact the owner directly for bugs or issues (IE: not bugzilla).
Release | Architectures | Repo Download |
---|---|---|
Fedora 38 | aarch64 (132)*, x86_64 (313)* | Fedora 38 (0 downloads) |
Fedora 39 | aarch64 (218)*, x86_64 (384)* | Fedora 39 (0 downloads) |
Fedora 40 | aarch64 (100)*, x86_64 (1332)* | Fedora 40 (315 downloads) |
Fedora 41 | aarch64 (52)*, x86_64 (841)* | Fedora 41 (223 downloads) |
Fedora rawhide | aarch64 (169)*, x86_64 (220)* | Fedora rawhide (65 downloads) |
* Total number of downloaded packages.